PHP 8.5.0 Released!

fann_train_epoch

(PECL fann >= 1.0.0)

fann_train_epochTreina uma época com um conjunto de dados de treinamento

Descrição

fann_train_epoch(resource $ann, resource $data): float

Treina uma época com os dados de treinamento armazenados em "data". Uma época é onde todos os dados de treinamento são considerados exatamente uma vez.

Esta função retorna o erro MSE conforme é calculado antes ou durante o treinamento real. Este não é o MSE real após a época de treinamento, mas como o cálculo dele irá requerer passar por todo o conjunto de treinamento mais uma vez, é mais que adequado utilizar este valor durante o treinamento.

O algoritmo de treinamento usado por esta função é escolhido pela função fann_set_training_algorithm().

Parâmetros

ann

resource da rede neural.

data

resource dos dados de treinamento da rede neural.

Valor Retornado

O MSE, ou false em caso de erro.

Veja Também

adicionar nota

Notas de Usuários 1 note

up
5
geekgirljoy at gmail dot com
7 years ago
This code demonstrates training XOR using fann_train_epoch and will let you watch the training process by observing a psudo MSE (mean squared error).

Other training functions: fann_train_on_data, fann_train_on_file, fann_train.

fann_train_epoch is useful when you want to observe the ANN while it is training and perhaps save snapshots or compare competing networks during training. 

fann_train_epoch is different from fann_train in that it takes a data resource (training file) whereas fann_train takes an array of inputs and a separate array of outputs so use fann_train_epoch for observing training on data files (callback training resources) and use fann_train when observing manually specified data. 

Example code: 

<?php
$num_input = 2;
$num_output = 1;
$num_layers = 3; 
$num_neurons_hidden = 3; 
$desired_error = 0.0001;
$max_epochs = 500000;
$current_epoch = 0;
$epochs_between_saves = 100; // Minimum number of epochs between saves
$epochs_since_last_save = 0;
$filename = dirname(__FILE__) . "/xor.data";

// Initialize psudo mse (mean squared error) to a number greater than the desired_error
// this is what the network is trying to minimize.
$psudo_mse_result = $desired_error * 10000; // 1
$best_mse = $psudo_mse_result; // keep the last best seen MSE network score here

// Initialize ANN
$ann = fann_create_standard($num_layers, $num_input, $num_neurons_hidden, $num_output);

if ($ann) {
  echo 'Training ANN... ' . PHP_EOL; 
  
  // Configure the ANN
  fann_set_training_algorithm ($ann , FANN_TRAIN_BATCH);
  fann_set_activation_function_hidden($ann, FANN_SIGMOID_SYMMETRIC);
  fann_set_activation_function_output($ann, FANN_SIGMOID_SYMMETRIC);
  
  // Read training data
  $train_data = fann_read_train_from_file($filename);
  
  
  // Check if psudo_mse_result is greater than our desired_error 
  // if so keep training so long as we are also under max_epochs
  while(($psudo_mse_result > $desired_error) && ($current_epoch <= $max_epochs)){
    $current_epoch++;
    $epochs_since_last_save++;  
  
    // See: http://php.net/manual/en/function.fann-train-epoch.php
    // Train one epoch with the training data stored in data. 
    //
    // One epoch is where all of the training data is considered 
    // exactly once.
    //
    // This function returns the MSE error as it is calculated 
    // either before or during the actual training. This is not the 
    // actual MSE after the training epoch, but since calculating this 
    // will require to go through the entire training set once more. 
    // It is more than adequate to use this value during training.
    $psudo_mse_result = fann_train_epoch ($ann , $train_data );
    echo 'Epoch ' . $current_epoch . ' : ' . $psudo_mse_result . PHP_EOL; // report
    
    
    // If we haven't saved the ANN in a while...
    // and the current network is better then the previous best network
    // as defined by the current MSE being less than the last best MSE
    // Save it!
    if(($epochs_since_last_save >= $epochs_between_saves) && ($psudo_mse_result < $best_mse)){
      
      $best_mse = $psudo_mse_result; // we have a new best_mse
      
      // Save a Snapshot of the ANN
      fann_save($ann, dirname(__FILE__) . "/xor.net");
      echo 'Saved ANN.' . PHP_EOL; // report the save
      $epochs_since_last_save = 0; // reset the count
    }
  
  } // While we're training

  echo 'Training Complete! Saving Final Network.'  . PHP_EOL;
  
  // Save the final network
  fann_save($ann, dirname(__FILE__) . "/xor.net");  
  fann_destroy($ann); // free memory
}
echo 'All Done!' . PHP_EOL;
?>
To Top